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On subcritical crack growth in ceramics 
as influenced by grain size and energy-dissipative 
mechanisms 
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Academy of Science of the GDR, Zentralinstitut for FestkOrperphysik und 
Werkstofforschung, DDR-8027 Dresden, German Democratic Republic 

A model is presented concerning the possibility that an unstable crack becomes stabilized 
by the initiation of some energy-dissipative mechanism if the stress intensity reaches a 
threshold value K g . Depending on the toughness and the grain size distribution of the 
material, different crack propagation modes may occur. For sintered alumina, measure- 
ments of the fracture induced photon emission can be explained in terms of this model, 
substantiating in this way the assumption that microcracking is the dominating form of 
energy dissipation in this single phase ceramic material. 

1. I n t roduct ion 
Fractographic determination of the flaw size C can 
be used to calculate the fracture surface energy 3' 
from the usual Griffith equation of = Z(2E3"/C) 1/2, 
where crf is the fracture strength, E is Young's 
modulus, and Z is a geometry factor. Measuring 
of and the initial flaw size Co for several poly- 
crystalline ceramic materials Rice et al. [1, 2] 
found that the apparent fracture energy 3' 
increases with increasing flaw size Co and decreas- 
ing grain size D. The effect was attributed to a 
transition of 3' from the (lower) single crystal 
value 3'se to 3'pc, the latter being characteristic 
for the polycrystalline material. For non-cubic 
materials it was shown that residual stresses can 
also be responsible for the variation of 3' with 
the flaw and grain sizes [2]. In some cases the 
C/D-dependence of 3' was also obtained by using 
the double cantilever beam (DCB)measuring 
technique. 

However, Dalgleish et al. [3 ] have shown that 
at least for alumina such an effect might be due 
to the large extent of subcritical crack growth in 
the DCB specimens. Therefore it must be expected 
that the fractographic procedure too may lead to 
unreal variations of 3' with C or D if subcritical 
crack growth is not taken into account, i.e. if the 
fracture strength is combined with the initial 
flaw size Co instead of Cf, the crack length at 
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macroscopic instability. This point of view is 
supported by results of Singh et al. [4] who 
demonstrated that, having two levels of fracture 
energy 3'0 and 3'1 with 3'1/7o ~> 5 we generally 
must expect 3' = 3'1 if subcritical crack growth 
occurs. Similar results have been obtained by 
Kirchner and Ragosta [5]. Taking into account a 
relation between the stress intensity K I and the 
velocity of quick subcritical crack growth, they 
have shown that in most cases 3' is determined by 
the polycrystalline value and that 3'=3'se is 
possible only for grain sizes exceeding 50 to 
100/Jm and stressing rates as high as 102 to 
104 MPa sec -1. 

The above considerations demonstrate that 
subcritical crack growth has to be taken into 
account in order to understand the macroscopic 
fracture behaviour. Nevertheless, locally 3' = 3'se 
will be a reasonable assumption for the onset of 
crack propagation at C -- Co with a stress intensity 
Ki~ which is considerably below the (macro- 
scopic) critical value Kie .  From a macroscopic 
point of view this first stage of crack propagation 

~usually belongs to the subcritical region; on the 
microscale, however, a preliminary instability may 
occur. So the question arises whether or not the 
running crack can be stabilized again. Singh et al. 
[4], Virkar et al. [6] and Pompe et al. [7, 8] 
analysed this problem analytically assuming a local 
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fracture surface energy dependent on the crack 
length. 

In the present paper we also':investigate cracks 
which macroscopically are propagating in the 
subcritical range and which may be stabilized after 
a first microscopic instability. In particular, we 
assume that stabilization may be effected by 
certain toughening mechanisms (especially energy 
dissipation by microcracking) which become 
active when the stress intensity K I exceeds some 
threshold value KID. The validity of this theoretical 
concept has been confirmed by certain exper- 
iments. Especially we have considered alumina 
ceramics where microcracking may lead to an 
increasing fracture toughness. In order to analyse 
the different stages of crack extension the fracture 
induced photon emission has been utilized. 

2. Theory 
As it is now widely accepted, a crack or flaw in 
a ceramic material under load may initiate the 
formation of an energy-dissipative zone at its tip, 
which under certain circumstances causes an 
increase in the toughness of the material. For 
example stress induced phase transformation in 
partially stabilized zirconia [9, 10] or micro- 
cracking in alumina containing ZrQ-particles [11 ] 
may cause energy dissipation. In other polycrystal- 
line structures without such possibilities "usual" 
processes as twinning, formation of river patterns, 
deflection of cracks at grain boundaries, and 
branching may also result in a critical stress 
intensity KI~ which is higher than that of the 
single crystal. 

Now let rD denote the size of the zone where 
energy dissipation takes place (rD is measured 
perpendicular to the crack plane, i.e. the distance 
between the outer boundaries of the zone is 2rD). 
Different theoretical considerations [12-14] have 
resulted in the following expression for r D : 

I ( K I I  ~ 
rD = 3-\-~e] (1) 

where oe is the critical stress at which energy 
dissipation starts and K I is the applied stress 
intensity. The prefactor, of course, may slightly 
differ from 1/3 depending on the particular 
energy-dissipative process. Obviously, the idea 
of a toughness4ncreasing dissipation zone makes 
sense only if its size is larger than a certain struc- 
tural length describing the distance between 
the dissipating elements (microcracks, transform- 
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ing particles). In our case of a single phase ceramic 
this structural length is given by the grain size D. 
Therefore, an increase in toughness due to energy 
dissipation requires r D to be larger than a critical 
value, say nD,  where n depends on the particular 
microstructure (n ~ 1 to 4). Using Equation 1 we 
immediately arrive at a corresponding value for 
K I which we denote by K~: 

K ~  = % ( 3 n D )  In. (2) 

The characteristic K~ acts as a threshold value for 
the onset of energy dissipation, l_)t us denote the 
two levels of specific fracture surface work by 
3'0 and 3"1, where 3"o is the reference value without 
energy dissipation and 3"1 is the governing quantity 
when energy dissipation takes place. Furthermore 
we assume a step-like change at K I = K~: 

3"o for KI < K~ 
3" = (3 )  

V x for K I ) K~ 
This approximation seems to be appropriate in 
order to discuss the physical effects caused by 
such a transition of 3" (the more complicated case 
of a smooth transition has been dealt with by 
Singh et  al. [4] and Pompe et  al. [7]). It is useful 
to define critical stress intensities K~c and Klc as 
derived from 3'o and 3'1 by the usual relations 

K~ = (2E3'o) v2, K~e = (2E3'1)  1/2, (4) 

(in this paper we shall not differentiate between 
plane stress and plane strain conditions, hence we 
neglect the difference between E and E/(1 -- v2). 
where u is Poisson's ratio). 

In the following we suppose 3"1 > 3'o, i.e. energy 
dissipation increases the toughness. Actually 3'o 
and 3'1 depend on numerous microstructural 
parameters (e.g. [13]) but these dependencies 
will not be a subject of this paper. Rather we shall 
consider 3'o and 3"1 as material properties given by 
theory or experiment. Starting from this position 
we shall investigate which of the two levels of 7 
determines the macroscopic fracture toughness 
Kie. In particular we shall consider two questions: 
1. Crack propagation starts at an applied stress 
i n t e n s i t y  K I = K~c < Kp. Subsequently K I 
increases due to the elongation of the crack. Can 
the crack be stabilized again by the onset of the 
energy-dissipative process? 2. If we compare two 
ceramic microstructures having different grain size 
distributions, how is the threshold stress intensity 
K~ influenced by the grain sizes? Let us start with 
the first problem. As in [4] we make use of the 



energy balance 

- - A P  = AW v (5) 

i.e. the crack can only be arrested if the elastic 
energy - - A P  released during crack extension 
equals the fracture surface work AW v consumed 
in this process. Since Equation 5 neglects the 
possible dissipation of  kinetic energy, actually it 
will provide an upper limit for the crack arrest 
length. The energy release - - A P  may be derived 
from the energy release rate 

G = K~/E. (6) 

The stress intensity K I depends on the crack size 
C via 

1 
K I = ~ ( C )  '/2 (7) 

where o is the applied stress and Z a geometry 
factor. Due to the exponential increase of  crack 
velocity with KI, even during subcritical stages we 
are concerned with a relatively rapid crack propa- 
gation. Therefore, we can assume that the applied 
stress is approximately constant during crack 
growth and K I increases mainly due to the growing 
value of C. Then o can be calculated f rom the 
condition K I = K~e at the starting length C = Co. 
Equation 7 yields 

7.1,"0 1~112 
o = ~ , ~ I r  - ( 8 )  

Substituting for K1 in Equation 6 by the help of  
Equations 7, 8, and 4 gives the energy release rate 
at constant load dependent on the crack length C: 

G = G ( C )  = 27oC/Co. (9) 

The fracture surface work AW v can be immediately 
derived from the specific work 7 of  Equation 3. 
Since K I depends on the crack size, the 7 o ~ 7 1  
transition proceeds after a certain amount of  crack 
elongation. This particular crack size, say CD, can 
be calculated from Equations 7 and 8 when K I is 
replaced by KID: 

cD = Co(KIDIKTJ. (10) 

Thus we have the result that for C < CD the frac- 
ture surface work is given by 70 whereas for 
C~> CD it is determined by 71. Note that CD is 
proportional to the starting length Co, i.e. it is 
not  a material constant. 

In order to simplify the analytical procedure, 
let us assume that the propagation of  the macro- 
crack is a one-dimensional process. Of course this 
is only an approximation, but it describes well the 

principal modes of  crack extension which occur in 
reality. Therefore, the energy balance (Equation 5) 
may be expressed by G and 3, in the following 

form" 

.ffsG(C)dC es = 2fGT(C)dC (11) 

where C s denotes the crack arrest length. Inserting 
Equation 3 and 9 into 11 yields 

7 o ( ~  - cg)lCo = 2%(cD - Co) + 2%(Cs i CD ) 

(12) 
from which we obtain for C s : 

G 1 
- . . . o  .~ ~ ( K I o )  ~ -  { [ ( K I o )  ~ - -  ( K T O q  

Co [/~Ic) 

x [ (K ie )  2 + (K~ 2 --  2 (KD)Z l } t n ] ]  

(13) 

Here we have replaced 7o and 71 by K~c and K~c 
using Equation 4. From Equation 13 we observe 
that crack arrest is possible only if the following 
condition is satisfied: 

KID ~< {[(KIe) 2 + (Kle) 2 ]12} '/2. (14) 

Otherwise no real solution for C~ exists, i.e. the 
increase in toughness at K D is insufficient to 
stabilize the running crack. Now we can summerize 
the different modes of crack propagation which 
are schematically represented in Fig. 1. 
( i )  

KID < KTc < KL (1 s) 

C 
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K ~ K 1 

Figure 1 Relations between the crack length C and the 
applied stress intensity K t. For the resting crack (solid 
lines) the increase of K I is provided by the growing load 
whereas during unstable stages (dotted lines) K I increases 
due to the crack elongation at almost constant macro- 
scopic stress (Equation 7). See text for propagation 
modes (i), (ii), (iii). 
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The energy-dissipative zone is already active before 
the onset of crack propagation. Therefore, K I 
must be increased beyond K~ up to Kle in order 
to initiate crack propagation. Then the crack starts 
from its original length Co and no subsequent 
stabilization takes place. 

0i) 
K~ <Kp ~< {[(K~ + "Ka ,2V2*W<K1 k I c !  I S I c  

(16) 
The crack becomes unstable (at least on the micro- 
scale) at K~e. Due to the increasing KI, energy 
dissipation commences at KID and the crack 
becomes stabilized at the length C s given by 
Equation 13. Then the load must be further 
increased to cause final instability at KJc. 
(iii) 

{ [(K~ 2 + ,"KIle!'~2~/2*I/2<KDJ s (17) 

Here again crack propagation starts at K~ Energy 
dissipation is initiated after a certain amount of 
crack elongation but, in contrast to mode (ii), it 
is insufficient to prevail against the energy release 
of the running crack and to stabilize it. Therefore, 
K~e has no influence on this mode of crack 
propagation. 

Now we turn to our second problem concerning 
the influence of the grain size D on the threshold 
stress intensity KID (Equation 2). Here we shall 
concentrate on microcracking at grain boundaries 
since this mechanism appears to be the dominating 
energy-dissipative process in single phase alumina. 
In order to calculate ae, the critical local stress at 
which microcracking starts, we must take into 
account the residual stresses being inherent to 
most ceramics. In polycrystalline A120 a they are 
due to thermal expansion anisotropy. Especially 
the tensile residual stress oi is important since it 
reduces oe below that critical stress O'me which 
would be necessary to initiate microcracking in 
the absence of residual stresses: 

(7 e = U m c - - O "  i .  (18) 

The residual stress o i can be assumed to be approxi- 
mately independent of the grain size D whereas 
Omc depends on D. This dependence can be derived 
assuming that microcracking starts from some 
defects (e.g. small pores at the triple points of the 
polycrystalline structure), the size, say 2a, of them 
being proportional to D. Then the Griffith 
criterion for a penny shaped flaw yields 

\ 112 

U r n  c = - -  - -  D-y/2, ( 1 9 )  
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where 7gb is the specific fracture energy of a grain 
boundary. The new constant A comprises all 
parameters except the grain size D. An identical 
relation between Ome and D has been derived by 
Lange [15] using a more profound model for 
microcrack formation. Finally we must choose 
an appropriate value for n representing that dissi- 
pation zone size which must be exceeded in order 
that the energy dissipative process does increase 
the toughness. In this paper we assume that the 
diameter 2r D of the zone at the transition point is 
about 2D, this means n = 1. Using this result and 
Equations 18 and 19 we obtain from Equation 2 

K ~  = 3 V2(A -- aiD1/5). (20) 

Thus we have derived KID dependent on the grain 
size, the residual stress ai, and the grain boundary 
fracture energy included in A. The theoretical 
results, i.e. Equations 13, 15, 16, 17, and 20 will 
form the basis of our discussion in Section 4. 

3. Experimental details 
Dense polycrystalline single phase alumina speci- 
mens with about 5 mm x 5 mm cross-section were 
fabricated by cold pressing and sintering in H2. 
At a constant average grain size of about 3/Ira it 
turned out that the mechanical properties strongly 
depend on the actual kind of the grain size distri- 
bution [16]: Samples having two separate maxima 
of the distribution (/51 = 2.1/~m, /52= 10 to 
15#m) in the ideal case showed an improved 
strength of 500 to 600MPa and Kie = 7 to 
8MPam 1/2. Presumably this effect is due to 
microcracking preferentially starting around the 
larger grains and optimized with respect to micro- 
crack length and density by the fine-grained matrix 
which hinders microcrack coalescence. For the 
present investigations underfired specimens with 
a lower fraction of larger grains and lower values 
of Kie were produced. They have been compared 
with samples made in an analogous manner and 
having the same average grain size (cf. Table I) 
but with a narrow monodisperse distribution 
instead of a bidisperse one. 

To examine subcritical crack propagation the 
fracture induced photon emission was measured 
during 3-point-bending fracture in a high-vacuum 
chamber. The emission is generated at the crack 
tip by stress activated luminescence from a priori 
present point defects of the lattice. Details have 
been reported in a previous paper [17]. Due to the 
limited counting capacity of the electronics there 



T A B L E I Structure and properties of homogeneous (A) and bidisperse (B) aluminas, p denotes the microcrack den- 
sity, ai the average fracture strength as measured directly in the course of the luminescence tests. K~ and KIe are the 
stress intensities for the macroscopically observable onset of subcritical crack growth and for instability, respectively. 
Ie(B)/le(A) gives the ratio of cumulative photon emissions registered during bending fracture of specimens (A) and (B). 
VH is Vickers hardness measured at 98.1 N. 

Grain structure p crf K~ KIe Ic(B)/Ic(A) 
(MPa) (MPa m u2) (MPa m m ) 

(A)/) = 3.0 tzm 1.4 305 -+ 80 2.9 +- 0.3 5.0 • 0.2 / 
(B)/1St = 2.1 #m (75 vol%) 1.0 480 +- 60 4.6 • 0.3 5.4 + 0.2 / 

/32 = 10-15 ~m (25 vol%) 
/) ~ 3 #m (all grains) 

0.05-0.30 at 
VH = 16.4-17.8 GPa 

was only negligible contribution from the high- 
speed crack propagation at K I > K I e  to the 
cumulative emission registered by a photomulti- 
plier. Thus the emission I e is a measure of  the total 
amount of all subcritical crack growth processes. 
Comparing the two structures we found a system- 
atic variation of  Ie(B)/Ie(A ) with increasing hard- 
ness (cf. [17]); in Table I this is reflected by the 
stated range of  data for Ie(B)/le(A ). 

The critical stress intensity Kie has been deter- 
mined by the usual notched beam test, by fracto- 
graphic means from the Griffith equation using 
the fracture strength o~ and the crack length Ce at 
final instability, and by indentation analysis. 
Besides KIe we have determined that value K~I 
where the subcritical crack growth becomes very 
rapid (10 to 100#msec -1) and measurable crack 
extension can be observed. Testing the specimens 
with a usual loading rate (cross-head speed 
0.5 mm min -1 at a span length of  30 ram), further 
increase of  K I up to Kie occurs primarily by quick 

Figure2 Microcrack system observed on a fracture 
surface of alumina. TEM micrograph; C-N-replica 
technique marks microcracks by dark contours following 
cracked grain boundaries. 

subcritical crack growth at almost constant load. 
Therefore, the stress intensity K~ requested for 
the onset of  quick subcritical crack propagation 
can be estimated combining uf with the flaw size 
Co. This original flaw size Co and the subcritical 
crack growth boundary Cf have been determined 
on fractographs using a procedure very similar to 
that described by Kirchner and Gruver [18, 19]. 
Typically we have found Co ~ 50 gm and Cf ~ 100 
to 200 pm. 

In order to characterize the microprocess of  
energy dissipation the microcrack density p has 
been estimated from the lengths of  microcrack 
traces measured on the fracture surface (replica 
micrographs) [16]. Fig. 2 presents an example of  
microcracking starting at a larger grain in a some- 
what overfired bidisperse structure. The sum of 
the squares of  the trace lengths related to the 
analysed surface area gives relative values for p as 
stated in Table I. Due to the special definition 
used such relative values can exceed unity, p = 1.0 
for the underfired bidisperse samples was esti- 
mated from p = 1.16 as measured for the fully 
developed structure with Kic = 7 to 8MPam 1/2 
[16]. Relating the microcracked area to the grain 
boundary area we obtained absolute crack den- 
sities of  about 0.40. 

4. Discussion 
Table I shows markedly different amounts of  
luminescence emission Ic for the two ceramic 
structures. This fact may be explained by the 
occurrence of  different modes of  crack propa- 
gation. In order to verify this we must evaluate 
the conditions 15 to 17. To this end we first have 
to estimate the basic parameters appearing in the 
derived relations. Fracture starts within a structure 
which is thought as having no microcracks. First 
intensive spalling of  grains at the tip of  the macro- 
crack (the fracture initiating flaw) will occur at 
K~ i.e. if K I equals KIc of  the most easily spalling 
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T A B L E I I Estimation of parameters used in the theoretical model for single phase polycrystalline alumina 

Basic parameters Parameters derived from Equation No. 

3'{i0 1 2; 1"0 1 0} = 6-7 J m -2 [20] K~e = 2.7 MPam in (4) 
"rgb ~ ~ ' r{10 1 2} -~ 0.6Jm -2 A = 2.34 MPa m ~/2 (19) 
E = 400 GPa 
2a ~ (0.1 to 0.2)D 
o i ~ 150MPa [21] 
D = ~ 4~m (A) (20) 

/ 20 um (B) (20) 
K I  D = f 3.5 MPa m ':2 (A)  

I, 2.9 MPa m m (B) 

lattice planes of  the A1203-crystal. Following 
Wiederhorn [20] this is about 2.1 to 2.5 MPa m I/2 
for {]-0 1 2} and {T01 0}. Since the average 
orientation of such planes in a fracturing poly- 
crystalline specimen will deviate from that of  the 
macrocrack plane, a slightly higher value may be 
requested for K~ (Table II). Once started, the 
crack accelerates and can proceed on grain bound- 
aries providing an increased percentage of  inter- 
crystalline fracture as it has been observed by 
Kirchner and Gruver on fracture surfaces of  
sintered [18] and hot pressed [19] aluminas at 
K I ~ 3 M P a m  1/2, which is only slightly beyond 
our estimation of K~ . 

Furthermore,  Table II presents the estimated 
values for the residual stress ai, for the microflaw 
size 2a, for the grain boundary fracture energy 7gb 
and the resulting constant A, which determines 
the critical stress for microcracking. Finally we 
must choose a characteristic value for D describing 
the size of  those grains at which microcracking 
first occurs. Of course, the probability to find a 
grain of  this size at the crack front must not be 
too low in order that a microcracked zone is 
really developed. Therefore KI D will be governed 
by a certain D between the average and the maxi- 
mum diameter occurring in the grain size distri- 
bution. 

Now we are in a position to apply the con- 
ditions 15 to 17 to our special alumina structures. 
The parameters Ki~ and KID may be obtained from 
Table II and K1e is given by the macroscopic KIe 
(Table I). 

(a) Homogeneous structure: Ki~ = 2.7 MPa m 1/2, 
K~ = 2.9 MPa m 1/2, KID = 3.5 MPa m 1/2, Krlc = 5.0 
MPam 1/2. For this structure the experimentally 
observed K~ practically equals K~ whereas the 
threshold value KID is well above Ki~ and KI*. 
Inspection of  condition 16 shows that crack 
propagation proceeds according to mode (ii). The 
initially moving crack is stopped at C s = 1.59 Co 
(Equation 13) after having reached CD. Then 

2 3 1 6  

again slow subcritial crack growth takes place and 
the applied load may be raised until Kie is reached. 

(b) Bidisperse structure: K~ =2.7MPam 1/2, 
K D = 2.9 MPam 1/2, K~ = 4.6 MPam 1/2, K~c = 5.4 
MPa m 1/2. Since the threshold value KID is approxi- 
mately equal to K~e and well below K~ (describing 
the onset of quick subcritical crack growth), we 
conclude that energy dissipation has commenced 
already before the beginning of  crack extension. 
This means that condition 15 applies and crack 
propagation proceeds according to mode (i): 

Thus we now understand the considerably 
higher value of KI* for the bidisperse structure. 
Due to this KI* the outer boundary of  the micro- 
cracked zone increases up to 50 to 70/am already 
in the subcritical range (Equations 1, 18, and 19 
using the maximum D ~ 20 to 25/am). This rD 
agrees well with our in situ observations made by 
means of a scanning electron microscope. Obviously 
in this case we must expect that microcracking 
occurs also around smaller grains situated in the 
central part of the dissipation zone. Therefore 
the microcrack density is thought to decrease 
with increasing distance from the microcrack tip. 
Although this may cause an additional influence 
onto the crack propagation mode in the region 
K~<~KI<Kr e we do not expect substantial 
changes. 

To illustrate our discussion Fig. 3 schematically 
shows the different stages of  crack propagation 
starting from a flaw size assumed as 50/am for 
both structures. The intermediate crack lengths 
were calculated from Equations 10 and 13. Dissi- 
pation zone sizes were obtained using Equations 
1, 18, and 19 with the average grain s ize/)  = 3/am 

for both structures (cf. Table I); thus the depicted 
zones represent a certain effective size between a 
minimum value belonging to the smaller grains and 
the outer boundary determined by the larger 
grains. The same effective zone size will be used 
for the estimation of luminescence. 

Although the homogeneous structure exhibits 



(o) homogeneous 
p= 0 p=/.4 p=/.~; p=l.4 

c (ym) 50 (Co) 

(b) bidisperse 
p= 1.0 

73(co)_8o(cs) 15o(c:) 

3.5(K~) 5.0 (Kfc) 
Figure 3 Modes of subcrJtical crack propagation in 
alumina structures with homogeneous and bidisperse 
grain size distribution, respectively. 

p-- f.O 

c (l m) sO(Co=C o) 7o(c: ) 

KT. (MPom l/z) g.6(K~) 5.4 (KIc) 

a higher microcrack density p than the bidisperse 
one, the critical stress intensity factor Kie is lower. 
This can be understood since beyond a certain 
limit of the density p the microcracks tend to 
coalesce thereby reducing the toughness. However, 
a detailed discussion of Kie as dependent on p is 
not the aim of the present paper. Rather we would 
like to find out, whether our measurements of 
luminescence support the concept of different 
modes of crack extension as shown in Fig. 3. To 
this end we shall theoretically estimate the lumi- 
nescence Ic to be expected for the two structures. 
According to the experimental technique, the 
cumulative emission I e is proportional to the 
density of microcracks p and the area over which 
the microcracked zone moves during the sub- 
critical stages of crack propagation: 

Ie ~ pf  ;~ rD(C)dC, (21) 

where C1 and C2 bound the region of subcritical 
crack growth. The density p in Equation 21 

characterizes the average amount of microcracking 
exhibited by the different structures. In this sense 
we assume that p is almost constant in the sub- 
critical stage of crack propagation, In addition we 
presuppose that only one macrocrack is initiated 
by the worst flow. For the size rD of the micro- 
cracked zone we again have to use a certain average 
value since luminescence is a measure of the total 
amount of microcracking around the grains of 
all sizes concerned. Therefore we make use of 
Equation 1 assuming an effective critical stress cT c 
determined by the average grain size/5 (cf. the 
above discussion to Fig. 3). Since/5 is identical for 
the two structures (Table I) we obtain from 
Equation 1 rD ~K~,  and Equation 21 may be 
rewritten as 

C 2 

I e ~pj K~(C)dC. (22) 
CI 

Because K~ is a linear function of C (Equation 7), 
it can easily be shown that this integral is given by 

Ie ~ {p(K~(C1) + K~(Cz))(C2-- Ct). (23) 

The lengths C1 and C2 and the corresponding 
values for K I can be taken from Fig. 3. For the 
homogeneous structure we have C1 = 73/~m and 
C2= 150/~m, whereas the behaviour of the 
bidisperse structure is described by Ct = 50#m 
and C2 = 70#m. Using these data we obtain for 
the ratio of emission intensities I e (B)/Ie(A) = 0.25. 
This result agrees fairly well with the experimen- 
tally observed emissions and seems to confirm our 
notion about different crack propagation modes. 
In addition, the correspondence between theory 
and experiment substantiates the assumption 
about the active role of microcracldng in the 
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subcritical stage of fracture. This is also in accord- 
ance with the results of acoustic emission exper- 
iments, which indicated the formation of a micro- 
cracked zone before the onset of subcritical crack 

growth [22] and a dependence of such crack 
extension on the actual grain size distribution in 

sintered alumina [3, 23 ]. 
Nevertheless there are still some open problems. 

These concern especially the determination of the 

microcrack density, since only a two-dimensional 

section of the real three-dimensional network of 

cracks was examined. Moreover, only a certain 
average density independent of the actual propa- 

gation stage was measured. Also the determination 

of luminescence involved some difficulties since 

only microcracking on the sample surface contrib- 
utes to the observed intensity. But one may hope 

that errors due to these problems are partially 
ruled out since we have considered only relative 
values of luminescence. Another problem is the 
following. The formation of the dissipation zone, 

especially in the bidisperse structure, is not  such a 
step-like process as assumed by the theory. Hence 
a more detailed investigation taking into account 
the inhomogeneous structure of the microcracked 

zone seems to be useful in order to further under- 
stand the processes on the microscale. 

6. Conclusions 
A model has been presented for the initiation of 
energy-dissipative mechanisms in brittle materials. 
Energy is dissipated if the stress intensity at the tip 
of the macrocrack reaches a threshold value KID. 
This can result in a new stabilization of the running 
crack if some conditions are met concerning the 

ratio between K ~  and the two toughness levels K~ 
(without energy dissipation) and Kde (generated by 
the dissipative process). This model holds indepen- 

dently of the actual process of dissipation. 

Experimental results obtained by measuring 

the fracture induced photon emission are readily 
explained if the theoretical model is combined 
with the idae of microcracking as the governing 
energy-dissipative mechanism in single phase 
sintered alumina. It turned out that the grain size 

distribution of the material plays an important 
role since the threshold stress intensity and the 

fracture toughness depend on it. Finally one 
may conclude that microcracking appears to be the 
dominating mechanism being responsible for the 
observed pecularities of crack propagation and for 
the mechanical properties of alumina structures. 
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